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The algebra of stereogenic pairing equilibria is presented in a very general context. Starting 
from the notions of fuzzy subgroup and conjugacy link, chemical pairing constants between 
molecular species u and v having a skeletal symmetry group G are formulated as "pairing 
products" on a G-Hilbert space. "Discriminating pairing products" K are defined by the condi- 
tions: "K>~ 1" and "K = 1 ¢* the representative vectors of the paired species are G-equiva- 
lent". When G has only two elements, the pairing product is always discriminating. For several 
skeletal symmetries, if the vectors are "enantiomorphic (v = o-u, o a = e, cr ~ G), then Kis greater 
than 1 and reaches 1 only if u is "achiral": "chirality indexes" and general "permutational 
indexes" are then defined from K(u, cru). The general model is illustrated by some examples. 

1. Introduction 

In preceding papers,  chemical hypotheses  were specified to represent the con- 
stant o f  pairing equilibria 2 u / v  ~ u / u  + v / v  by an algebraic expression, where u 
and v are vectors featuring molecules [1]. These molecules are supposed to be skele- 
tal analogs which pair tightly under  the influence of  a single interaction of  either 
a t t ract ive- type or repulsive-type. Three assumptions were invoked: skeleton sym- 
metrization, skeleton overlap pairing and scalar product form o f  the ligand interac- 
tion. Two constants  were defined, depending on whether  the stereogenicity is 
regarded as an "enthalpic  cont r ibut ion"  (constant  K')  or as an "ent ropic  contr ibu-  
t ion"  (constant  K). 

The pairing constant  K~(u, v) was proven to be always greater than 1 for at trac-  
t ive-type interactions,  and smaller than 1 for repulsive-type interactions [2]. Never-  
theless, K~(u, v) may  equal 1 even if u and v are not  chemically equivalent: that  is 
the reason why our  efforts  focus on the chemical pairing constant  K. 

Fo r  at t ract ive- type interactions, if G acts by permuta t ion  on a two-site skeleton 
(G ~ 82), then K(u ,  v) was proven to be always positive and it was proven to vanish 
only when u and v are equivalent  skeletal analogs. The chemical implications of  
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these algebraic speculations were analyzed for some equilibrating stereoselective 
chemical reactions: olefin metathesis, Diels-Alder reactions and cyclopropanation 
reactions. When u and v represent enantiomers, the same statement was proven 
for various skeletal symmetries, and in particular for tetrahedral symmetry [3]. 

A very general formulation is now detailed for the sake of mathematical consis- 
tency. Beginning with the notion of fuzzy symmetry group, a set-theoretic introduc- 
tion is first proposed [4]: 

DEFINITION 1 
Let G be a group. A fuzzy subset d of G is called a "fuzzy subgroup of G" if its 

membership function #A__: G--+ [0, 1] satisfies: 
(i) A_contains a trivial element, i.e. 3g ~ G, #A(g) = 1. 
(ii) V(g, h) ~ G 2, #A(g). #A_(h) ~#A(gh). 
(iii) Vge G, #A_(g) = #A(g-1). 

The definition and its consequences were shown to meet basic definitions of 
group theory [4]. Throughout the discussion, p denotes a strictly positive real num- 
ber having the thermodynamical significance p = -a/rqkT, a < 0 (only attractive- 
type interactions are considered). 

2. Pair ing products  on metric spaces 

DEFINITION 2 
Let a compact or finite group G act on a metric space (E, d) and preserve the dis- 

tance (Vg e G, V(M, N) ~ E 2, d(gM, gN) = d(M, N) [5]). For each point M in E, 
the map 

#A = #M: G "-+ [0, 1] 

g--* exp[-d(gM, M)/x/2] 

is the membership function of a fuzzy subgroup A of G (the requirement (ii) in defi- 
nition 1 results from the triangular inequality). This fuzzy subgroup is denoted as 
A = G M. 

PROPOSITION 1 
Straight from definition 2, it follows that: 

(i) The trivial part ofG M is the stabilizator of M: T(G M) = G M. 
(ii) If M and N belong to the same orbit (i.e. if 3 h E G, N = hM), then _G_G M and G N 
are trivially conjugated, namely: Vg ~ G,/zu(g) ---- #m(h-lgh) [4]. 

DEFINITION 3 
Under the same conditions as in definition 2, for each couple (M, N) E E 2, the 

map 
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p~t: G-'," [0, 11 

g-~ exp[-d(gM, N)/v/-2] 

is the membership function of a fuzzy subset of G denoted as G N. 

PROPOSITION 2 
Straight from the definition, it follows: 

(i) V(g, h ) e O2, puM(g -1) = pg (g) and P~m(g ) = pg ( h-l g). 
(ii) The trivial part of G~ is T(_G~) = {g E G; N = gM} = C,~M. 
(iii) __G~ is a fuzzy subgroup of G, if and only if G- M = G- N. Then__G~ = _.G M. 
Moreover, T(G~t ) = ~ e ,  G. M ¢ G-N.  
(iv) G ~  is a right class modulo a fuzzy subgroup A of G, if and only if M and N 
belong to the same orbit. Then A = G M. 

THEOREM 1 
C = G N is a conjugacy link between A = G M and B = G N [4]. 

Proof 
From the inequality d(gM, N) + d(hM, N) >>.d(gM, hM) = d(h-lgM, M), it 

follows that 

V(g, h) e G 2, P_c(g) " p _c(h) ~< pa(h-lg) = PhA_(g) <~ Pc(g)~pc(h). 

From the inequality d(h-l gM, M) + d(hM, N) >f d(gM, N), it follows that 

pc(g) 
Pha(g )  <<- Pc_( " 

Analogous inequalities are obtained by permuting M and N. Therefore C is a con- 
jugacy link between G M and G N. [] 

DEFINITION 4 
Retaining the same notations, the reciprocal of the 1/p power of the correspond- 

ing conjugacy index X is denoted as Kp(M, N) and is called the "pairing product 
of M and N": 

1/. 

Kp(M,N) = (1/X) 1/p = [ ~ j  
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By using the basic properties of the distance d and the isometric character of the 
action of G on (E, d), the statements below are immediately obtained: 

P R O P O S I T I O N  3 

V(M, N) E E 2 , V(g, h) e G 2, 
(i) Kp ( g ,  N) = Kp (N, M). 
(ii) Kp (gM, hN) = Kp (M, N) (Kp is "completely G-invariant"). 
(iii) Kp(gM, hM) = 1. 

Replacing the fuzzy subsets A, B and C by their trivial parts in the expression 
of X =  I/Kpe(M,N), we get: TX(M,N) = (#T(C))2/(#T(A)  • T(#B))  
= ( # G N ) Z / ( ~ G  M. # G  N) = 0 o r  1 (proposition 2). Therefore, for any point M0, 
the map 

TX(Mo,.):E---~[O, 1], 

N--+ 1, if N belongs to orbit of M0, 

N ~  0, otherwise. 

is the membership function of the orbit of M0. 
Provided that: 

(a) V(M, N) ~E 2, lIKe(M, N) <~ 1, 
(b) 1/Kp(M,N) = 1 =~ M and N belong to the same orbit, TX is the integer part 
of X = 1/Kf~. The maps X(M0,.) = 1/Kp p (M0,.): E ~ [0, 1] are interpreted as mem- 
bership functions of "fuzzy orbits": they indicate "how much M0 and N belong to 
the same orbit". 

D E F I N I T I O N  5 

A pairing product satisfying the conditions (a) and (b) is called a "discriminat- 
ing pairing product". 

P R O P O S I T I O N  4 

Whenp --~ oe, Kp converges to a discriminating pairing product Koo: 

K~(u,  v ) =  p~o~lim Kp(u, v ) =  exp [Mind2(gu, v)] . [ . g e G  

Proof 

X (u, v) = 

(/;expI- d2/ ,v/l 2" 
A well-known result claims that whenp -+ + oe, 
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(faeXp[--2dE(gu,  u)l dg) 1/p--~ Max{exp[-d2(gu, u)/2]} = 1  

(reached for g = e), 

( f a e x p [ - P d 2 ( g v ,  v)l dg) '/p--~ Max{exp[-d2(gv, v)/2]} = 1  

(reached for g = e), 

( f a e x p [ - P d 2 ( g u ' v ) J  dg) 2/p-'+ Max{exp[-dE(gu'v)/2]}'gEO 

Owing to the facts that the exponential is an increasing real function and that 
exp[-X] = 1 / exp[X], the result follows. [] 

This result prompts us to find out whether the discriminating property can be 
extended to finite p values. It is noteworthy that if E is an Euclidean or Hermitian 
vector space, then K~(u, v) = K1 (v,~U, x/~v). Thus, as soon as K1 is a discriminat- 
ing pairing product, all pairing products Kp are discriminating forp < c~. 

3. Pairing product  on G-Hilbert spaces 

In the sequel, we consider complex vector spaces of finite dimension. 
If the compact group G acts on a Hermitian C-vector space E according to a lin- 

ear representation preserving the Euclidean distance (E is a G-Hilbert space), 
then, for any vector u E E, __G u is defined by 

#u: G--+ [0, 1], 

g ~ e-{llgu-ull/vS} . 

It is easily checked that if Re(z) denotes the real part of a complex number z, then 
the pairing product of the vectors u and v, is given by 

Kp(U, V) = ( fGe PRe(gulu) dg) l/P ( fGe P Re(gvJv) dg) l/P 

(fG ePRe(gulv) dg) 2/p 

E is expanded as a direct sum of irreducible representations of G, V1, • • •, Vr, where 
V1 is the unit representation: E = ml  V I ( ~ ) . . - @ r n , . V , . , m i ~ N .  It is easily shown 
that if Ul belongs to ml V1, 

V(u, v) e E 2, Kp(u + Ul, v) = e Ilu' 112+2 Re(u-vlu,)Kp (U, V). 
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Thus, i fml  7 ~ O, for any couple of vectors (u, v), there exist an infinite range of  vec- 
tors u + ul such that Kp(u + ul, v)/> 1 (since Re(u  - vlul)  ~< Ilu - vi i"  Ilul II, it suf- 
rices to take ul e ml V1 with a great enough norm: in part icular ,  Ilul II 1> 211u - vii) .  

In a first approach, discriminating pairing products are sought by means of  a 
minorat ion.  

THEOREM 2 

V h e G ,  

with 

V(u, v)E EE, exp [Lu'v(k!] ~<Kp(U, v) 
LI(u,v)] 

f 
L ,v(h) = i c e  p Re(gulv) . Re(gu - hg- lv]hu  - v) dg, 

= fG ep Re(gu[v) dg. 

Therefore,  if there exists an operation h such that O~</~,v(h), then Kp(U,V) is 
greater than 1. 

The proof  is essentially based on the convexity of the exponential and is given 
in reference [1] for a real Euclidean structure. Since only the real part  of  the Hermi-  
tian product  appears in Kp(u, v), it is easily adapted to the present theorem. The 
result is now applied to the case G = {e, or}, o ~ = e. 

THEOREM 3 
Whatever  the Hermit ian representation space E of  the group G = {e, cr} 

( ~  = e) preserving the scalar product,  the corresponding pairing product  is a dis- 
cr iminating pairing product,  i.e. V(u, v) ~ E 2, 

(e Pllutl2 + e p Re(o-u[u) ) lip (ePllvll 2 + ep Re(owJv ) ) lip 
(i) 1 ~<Kp(u,v) = 

(eP Re(u[v) _{_ eP Re(°'uJv)) 2/p 

(ii) Kp(u,v) = 1 =~ u = v o r a u  = v. 

The proof  has been detailed in ref. [1] for an Euclidean structure, and, again, it 
is easily extended to the Hermit ian structure. 

For  G = {e, t, t2}, t 3 = e, the reduction of theorem 2 is not  sufficient to prove 
that  the corresponding pairing products are discriminating [6]. Nevertheless,  we 
were not  able to prove that  the pairing product  of any G-vector space is not  discri- 
minating.  

The pairing product  of  vectors which are bound to some relationship v = f ( u )  
can be systematically envisioned: 

• v = u + A u ,  IIAull < E. The study of the local (or differential) discriminating char-  
acter of  pairing products will be reported in ref. [7]. 
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• v = -u .  Forp = 1: 

e Re(gulu) dg 

K1 (u, - u )  = 
( f c  e-ge(gulu)dg) 2 

and therefore, 

1 ~<Kl(u,-u) ¢~ 0~< [ sinh[p Re(gu]u)] dg. 
d6 G 

It is noteworthy that this inequality is not evidently proven or refuted. 

• v £ u, i.e. (u[v) = 0. The proposition below holds [8]: 

P R O P O S I T I O N  5 

Suppose that G is an Abelian group, and that E is an irreducible representation 
space of G (Vu ~ E, Vg ~ G, gu = x(g)u, where X is the character of the representa- 
tion). Then, if (u[v) = 0, the corresponding pairing product Kp(u, v) is greater than 
1. 

• v = o'u, with cr~O(E),a 2 = e. Owing to the chemical importance of the prob- 
lem, the next part resumes results on Kp(u, cm): the relevance of propositions below 
is illustrated by their application for quantifying chiral discrimination [3]. 

4. Permuta t ional  indexes and chirality indexes 

D E F I N I T I O N  6 

Let G be a finite or compact group, let E be a G-Hilbert space, and suppose that 
G is a subgroup of the isometry group of E,O(E)(GF'= {e} [5]). Suppose that 
there exists a subgroup of O(E), 82 ~ {e, or}, ~ = e, G 75 82: the representation of 
G in E induces a representation of the group 82. G (semi-direct product) in E itself. 

Let Kp be a pairing product on E, and let us define the map 

X p : E - ~ [ - 1 ,  +I], 

~pP(u ,  ~ u ) -  1 
u'-+X(U) = X/Kg(u, au) + 1 

Let E be the n-fold product of a vector space U endowed with a scalar product 
( .  ] • ): E = (x U) n. Then, E is endowed with the scalar product defined by 

n 

V(U,V) EE 2, (ulv)-- <uklvk>, 
k=l 
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where u = (ul , . . . , u,,), u~: ~ U a n d  v = (Vl , . . . ,  Vn), Vk ~ U.  
Assuming  that  8 2 - G  acts by pe rmuta t ion  of  the componen t s  ui of  

u = (U l , . . . ,  u,,)e E [9], X is called a "pe rmuta t iona l  index of  u" .  This  expression 
does no t  depend  on the choice of  ~r e 82. G - G. When  G is i somorphic  to a ro ta t ion  
group  preserving an achiral skeleton in R 3 and cr acts as a mir ror  plane,  an inver- 
sion or an improper  rotat ion,  X has been called the "chiral i ty index o f u "  [3]. 

The  quant i ty  x/KpP(u, c~u) is denoted  as p ( u ) ( K p ,  X and p are equivalent  data).  
Then:  

(1) i f3h E G, cru = hu, then X(u) = 0 (p(u) = 1). 

(2) i f K p  is discriminating,  then 0 ~< X(u) ~< 1 (1 ~< p(u)).  

Results that  have been proven in a chemical context  [3] are now p roduced  in a 
general  context,  but  the same proofs  can be retained. 

• G ~ A.,, (al ternate group o fn  symbols),  82 " G = 8,, (nth symmetr ic  group)  [10] 

THEOREM 4 
Let U be a K-vector  space (K = R or C) endowed with a scalar p roduc t  ( .  I " ). 

Then,  the permuta t iona l  index is the ratio of  the de te rminant  to the pe rmanen t  of  
the (n, n) -Hermit ian  matr ix  (eP(U'luj>)l <~i<~n,1 <<.j<~,," Moreover ,  

eP(U~ lu~ ) eP<U~ lu~) 

eP(UdU~ > eP(U~lun> 
( 1 ) y u l e  = x(u)  = >/0.  

eP(Ul lul ) eP(Ul lu,> 

ep<u~lu~ > eP<Unlun> 

(2) Vu ~ E = (x U),,, X(u) = 0 ¢ ,  3h e./t,,, hu  = o-u, where cr belongs to 8,, - A,,. 

(3) the cor responding  results are also valid for the real symmetr ic  mat r ix  
(e~e<u*lu,>). 

• G ~ e4 (cyclic group with four elements) 

THEOREM 5 
Suppose  U --- R. The  subgroup  e4- $2 of 84 acts on E = R 4 by pe rmuta t ing  the 

four  componen t s  of  the vectors of  E. The corresponding pe rmuta t iona l  index is 
wri t ten as: Vv/ff u = (x, y, z, t) ~ R 4, 
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eX2 +y2 +z2 +t2.Jr.2exy+yz+zt+tx.+.e2XZ+2yt eX2 +Zz +2yt e ~  +t2 +2XZ e2Xy+2Zt e2Xt+2yz 

ex2 + y2 + z2 + t 2 _t_exy+ yz + zt + tx_t_e2XZ + 2 yt_t_eX2 + Z2 + 2yt..}_ey~ + tZ + 2xz.q_e2Xy+ 2zt_l_e2Xt + 2yz 

and 

(1) VueR4,x(u)  f>0. 

(2) VU E R 4, X(u) = 0 ¢:~ 3h e e4, hu  = au,  wherein cr belongs to e4- g2 - e4. 

• G ~ (D 4 (non-cyclic group with four elements i somorphic  to 82 x g2) 

THEOREM 6 
Suppose  U = R. The  subgroup (g2 x g2) • g2 - ~D4. g2 of  g4 acts by pe rmuta t -  

ing the four  componen t s  of  the vectors of  R 4. The corresponding pe rmuta t iona l  
index is wri t ten as Vv, ~ u = (x, y, z, t) e R4: 

eX.2 +y2 +z 2+? +e2Xy + 2zt -Jr-e 2xt+ 2yz--l-e 2xz+2yt- e x2 +z2+yt _2eXy+yz+zt+tX_e y2+t 2 +2xz 

X(u) ex2+y2+z2+t2-+-e2xy+2ztq--e2x~+2yz-~-e2xz+2y~t-ex2+z2+2yt--[-2exy+yz+zt+tx~Ley2+t2+2xz , 

and  
(1) VueR4, x(u) ~>0. 
(2) Vu e R 4, X(u) = 0 ¢* 3h e 2)4, hu = cru, wherein abe longs  to ~D4- 82 - 2)4. 

Suppose  that  E is the direct sum E = V1 @-- -  @ Vr, where Vi = (xU)"q Suppose  
tha t  G is the direct p roduc t  of  pe rmuta t ion  groups G1, . . . ,  G,, and  that  each Gi 
acts on Vi by pe rmuta t ion  of  the ni componen ts  of  orbit-vectors u t = ( ~ , . . . ,  u~,,). 
Let  X1 , - . . ,  X~ be permuta t iona l  indexes of  respectively G1 , . . . ,  G~. Then  X is the 
p roduc t  of  the Xi'S: 

r 

x ( u  = e . . . e u  r) = r [  x i ( u i )  = x ( u ) .  
i=1 

Consequent ly ,  if the propert ies Vuie Vi, xi(ui)>~O and Xi(U i) = O e *  3h~Gi,  
hu i = cru i are satisfied by all the V,.'s, the corresponding proper ty  is also satisfied 
in E. 

THEOREM 7 
If  l igand parameters  are real numbers ,  the differential equat ion  below holds  

[11]: 

Oxi = 2 xi . A ,  

where v'~ u = ( X l , . . . ,  xn), and A is the numera to r  of  X: 
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LED ] r r A(U) = exp Xg(k)Xk d g -  __ exp Z Xg(k)X:(k' dg. 
JG Lk=l 

(Proof is given in ref. [3].) 
Finally, in order to dwell on the consistency of  the algebraic model, the defini- 

tions can be applied to situations without a direct chemical interpretation. Let a 
group G act on a Hermitian vector space E and preserve the scalar product.  Sup- 
pose that S is a part o f E  endowded with a measure d-r. The set H(S) of the maps 
v: S---,-E satisfying f s  Ilv(u)ll 2 d'ru <oo  is a Hilbert space for the scalar product  
defined by 

V(v,v')~H(S) 2, (vlv') = fs(v(u)lv'(u)) &.. 

Then, G naturally acts on H (S) by: Vv e H (S), Vg e G, g .  v: S ~ E, u --+ v(gu). 
The pairing product  of two maps v and v' of  H(S) is therefore defined. 
If  S is a part  of R m, let Gs denote the isometry group of  S. Considering the sub- 

duced representation of the rotat ion subgroup G = G + of Gs, the chirality index of  
any element in H(S) ( forp  = 1) is defined. In particular, the chirality index of  the 
canonical map  Ids: S --+ E, u -+ u, is a "vectorial chirality index" of S. Several calcu- 
lations performed without an intent of  chemical interpretation always afford vec- 
torial chirality indexes which are strictly greater than 1 [12]: they support  the 
relevance of the questions asked by the model. 

5. Conc lu s ion  

The discriminating character of other pairing products is under current investi- 
gation, and among our calculations performed to date, no pairing product  was 
found to be greater than 1, nor to match 1 for non-G-equivalent vectors. Nonethe-  
less, the preceding prerequisites have been set out in view of further developments 
concerning the design of"completely G-invariant distances" associated with discri- 
minat ing pairing products [13]. 
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= Jfc ep r~k(g)(uMl{Re x(g)[lu - vii 2 + Re[2i Im x(g)(vl u - v)]} dg 

= f ePRe[x(g)(ulv)l{Re x ( g ) l [ u  - vii 2 + Re[2i Im x(g)(vlu - v)]} dg 
J G  

= ~ e ~ Relx(g)(ulv)l {Re x(g)II u - vii 2 + 2 I m  x (g )  Re[i(v[u) - ill vii 2] } d g  

= L ep Re[x(g)(ulv)} {Re  x(g)llu - ~ll 2 + 2 Xm x(g) I m ( u M }  de. 

Since (ulv) = 0: L,,v(e) = Ilu - vii 2 f c  Re x(g) de = Ilu - vii 2 R e { r e  X(g) dg} = 0 or Ilu - vii 2, 
the latter value being obtained only if E is a unit representation space of  G. Thus, applying 
theorem 2, Kp(u, v)/> 1. Proposition 5 follows. 
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[9] Tha t  means that: Vu e E, Vg • G. 82, Vk • { 1 , . . . ,  n}, (gU)k = UgCk). 
[10] The detailed proof  is given in Supplementary Material of  ref. [3]. For  1), all the eigenvalues of 

the matrix prove to be positive; the result is based on the fact that all the coefficients of  the 
McLaur in  expansion of  the exponential function are positive. For  2), the properties of van  der 
Mond  determinants  are used. 

[11] A condensed formulat ion is given: if u0 = ( 1 , . . . ,  1), then: (2Zl(u)u - ~----~A(u)lu0) = 0. 
[12] Some numerical  results obtained without difficulties are produced (with p = 1). 

(a) S is a sphere of unit  radius o fR" .  
• m = 1: S = { - 1 , + I } ; G  + = {e};d~'u : ½ ;  dg= l : p  = e2(>~ 1). 
• m = 2 :  S = {(cos 0, sin 0); 0 •  [0, 21r[}; d r ,  = l dO; G + = {rotations centered at O, of  angle 

• [0, 2rr[}; 
dg= ~ dc~: p = ~ f:~e . . . .  da (1 .266 . . .  ~>1). 
• m = 3: S =  {(sinOcos¢,cosOsin¢,cosO);O•[O, rr],¢•[O,27r[};d'cu =~sinOdOd¢. 
G + = {rotations centered at O, of Euler angles a • [0, 27r[, 13 • [0, 7r], 3' • [0, 27r[}; 

f 2rr e2COSa+l _ e-1 

1 J0 ~ - ~ s  ~ ~ i  d~  
dg=g-~3sinf ldad~dT:P= f2,re2 . . . . .  I _  (~  1 .16 . . .> /1 ) .  

Jo co--~-~-~-ie da 

(b) S is  a full sphere of unit  radius ofR m. 
• m = 1: S = [ -1 ,+1] ;  G + = {e);d'ru = ½; dg = l : p  = e2/3(>~1). 
• m = 2 :  S = {(r cos 0, r sin 0); 0 • [0, 27r[, r • [0, 1]}; dT~ = ~r dO dr; G~ = {rotations centered at 
O, of  angle a • [0, 2rr[}; dg = ~ d a :  p = i f2o~ eICO~l/2da(~ 1 .063 . . .  1> 1). 
• m = 3 :  S={(psinOcos¢,  pcosOsin¢,pcosO); p•[0,1] ;  0•[0,0],  ¢ • [0 ,2 r [} ;  dTu= ~.~p3 2 
sin 0 dp dO de;  G~ = {rotations centered at O, of Euler angles a • [0, 2zr[,/3 • [0, lr], 7 • [0, 27r[}; 

[ 2~r e3(2cosa+l)/5 _ e-3/5 

1 Jo c~saq-1 da 
dg= 8--fi~3 sin~3 da di3 d"/:p = f2~ ~(2 . . . . .  1)/5 _ e3/5 

J0/ cos a ~ -  1 d a  

(c) S is consti tuted by the four vertice of a tetrahedron of uni t  radius in R 3. 

e 1 + 3e-V 3 + 8e ° 
Gs=Ta,  G + = T : p =  6eV3+6e-U3 (~  1 .015 . . .> /1 ) .  

(d) S is constituted by the five vertice of trigonal bipyramid of unit  radius in R 3. 

e I + 2e Vl° + 3e-2/5 
Gs = D3h, G~ = D3:p = el/5 + 3e2/5 + 2e_7/10 (~  1.037. . .  >i1). 

(e) S is consti tuted by the six vertice of an octahedron of unit  radius in R 3. 

e L + 8e ° + 6e L/3 + 9e-l/3 
Gs = Oh, G~ = O: p = e-  L + 8e o + 6e-V3 + 9eU3 (~  1.012. . .  >~ 1). 

(f) S is consti tuted by the eight vertice of a cube of  unit  radius in R 3. 

e L + 8eL/4 + 6e-V 2 + 9e ° 
Here again: Gs = Oh, G~ = O:p = e-  1 + 8e_L/4 -k- 6e L/2 + 9e ° (~  1.005. . .  >i 1). 

[13] R. Chauvin,  Papers III  and IV of this series, J. Math. Chem. 16 (1994) 269,285. 


